In order to ensure that tap water is safe to drink, the EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline at 1-800-426-4791.

ADDITIONAL HEALTH INFORMATION

For Customers with Special Health Concerns

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
(B) Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
(E) Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

Table Notes

A. Results in the Level Detected column for radio logical contaminants, inorganic contaminants, synthetic organic contaminants including pesticides and herbicides, and volatile organic contaminants are the highest average at any of the sampling points or the highest detected level at any sampling point, depending on the sampling frequency.

B. For bromate, chloramines, or chlorine, the level detected is the highest running annual average (RAA), computed quarterly, of monthly averages of all samples collected. The range of results is the range of results of all the individual samples collected during the past year.

C. For haloacetic acids or TTHM, the level detected is the highest RAA, computed quarterly, of quarterly averages of all samples collected if the system is monitoring quarterly or is the average of all samples taken during the year if the system monitors less frequently than quarterly. Range of results is the range of individual samples divided by three.

D. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water primarily from materials and components associated with service lines and home plumbing. The FGUA is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/leadwater.

HOW TO REACH US

If you have any questions about this report or concerning your water utility, please contact your local FGUA office at (727) 372-0115 or visit our web site at http://www.fgua.com. The local FGUA office is open from 8:00 AM until 5:00 PM, Monday through Friday.

The FGUA encourages its customers to become involved in decisions that may affect the quality of their drinking water. Customers interested in becoming involved may attend regularly scheduled meetings of the FGUA Board of Directors. These meetings are advertised in your local newspaper and also on the FGUA web site.

SOURCE WATER ASSESSMENT PLAN

In 2017, the Department of Environmental Protection performed a Source Water Assessment for Tarpon Springs Utilities, which in turn purchases its water from Tampa Bay Water (TBW). The assessments were conducted to provide information about any potential sources of contamination in the vicinity of the TBW surface water intakes. The surface water system is considered to be at high risk because of the many potential sources of contamination present in the assessment area. The assessment results are available on the FDEP Source Water Assessment and Protection Program website at www.dep.state.fl.us/swapp.

This report shows our water quality results and what they mean.

ANCOLUTE VILLAGE

PWS ID# 6512177

2017 ANNUAL DRINKING WATER QUALITY REPORT

Este reporte contiene información muy importante sobre su agua potable. Tradúscalo o hable con un amigo que lo entienda bien.

We are pleased to present to you this year’s Annual Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water.

We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water.

WHERE YOUR WATER COMES FROM

Currently our customers are receiving drinking water from Tarpon Springs Utilities. The Water Quality Report for Tarpon Springs has also been provided. Chloramination for disinfection is the treatment process used in this water system.

HOW WE ENSURE YOUR DRINKING WATER IS SAFE

The FGUA monitors for contaminants in your drinking water according to Federal and State laws, rules and regulations. Except where indicated otherwise, all data is based on results from the most recent testing done in accordance with the laws, rules, and regulations.

As authorized and approved by the EPA, the State has reduced monitoring requirements for certain contaminants to less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. As a result some of our data is more than one year old.

Traducido o hable con un amigo que lo entienda bien.
WATER QUALITY SUMMARY TABLE

STAGE 1 DISINFECTANTS AND DISINFECTION BY-PRODUCTS

<table>
<thead>
<tr>
<th>Disinfectant or Contaminant and Unit of Measurement</th>
<th>Dates of sampling (mo./yr.)</th>
<th>MCL or MRDL Violation Y/N</th>
<th>Level Detected</th>
<th>Range of Results</th>
<th>MCL or MRDLG</th>
<th>MCL or MRDL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloramines (ppm)</td>
<td>01/2017 – 12/2017</td>
<td>N</td>
<td>2.0</td>
<td>1.10 – 3.5</td>
<td>MRDLG = 4</td>
<td>MRDL = 4.0</td>
<td>Water additive used to control microbes</td>
</tr>
</tbody>
</table>

STAGE 2 DISINFECTANTS AND DISINFECTION BY-PRODUCTS

<table>
<thead>
<tr>
<th>Disinfectant or Contaminant and Unit of Measurement</th>
<th>Dates of sampling (mo./yr.)</th>
<th>MCL or MRDL Violation Y/N</th>
<th>Level Detected</th>
<th>Range of Results</th>
<th>MCL or MRDLG</th>
<th>MCL or MRDL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haloacetic Acids (five) (HAA5) (ppb)</td>
<td>Quarterly 2017</td>
<td>N</td>
<td>6.56</td>
<td>0.0005 – 12.12</td>
<td>N/A</td>
<td>MCL = 60</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>THM [Total trihalomethanes] (ppb)</td>
<td>Quarterly 2017</td>
<td>N</td>
<td>2.38</td>
<td>0.001 – 9.32</td>
<td>N/A</td>
<td>MCL = 80</td>
<td>By-product of drinking water disinfection</td>
</tr>
</tbody>
</table>

LEAD AND COPPER (TAP WATER)

<table>
<thead>
<tr>
<th>Contaminant and Unit of Measurement</th>
<th>Dates of sampling (mo./yr.)</th>
<th>AL Violation Y/N</th>
<th>90th Percentile Result</th>
<th>Exceeding the AL</th>
<th>MCLG</th>
<th>AL (Action Level)</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (tap water) (ppm)</td>
<td>07/2015</td>
<td>N</td>
<td>0.037</td>
<td>0</td>
<td>1.3</td>
<td>1.3</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives</td>
</tr>
</tbody>
</table>

In the table, you may find unfamiliar terms and abbreviations. To help you better understand these terms we’ve provided the following definitions:

- **Action level (AL):** the concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
- **Maximum contaminant level or MCL:** the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- **Maximum contaminant level goal or MCLG:** the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- **Maximum residual disinfectant level or MRDL:** the highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- **Maximum residual disinfectant level goal or MRDLG:** the level of a disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- **Millions fibers per littler (MFL):** measure of the presence of asbestos fibers that are longer than 10 micrometers.
- **ppm:** parts per million or milligrams per liter is one part by weight of analyte to one million parts by weight of the water sample.
- **ppb:** parts per billion or micrograms per liter is one part by weight of analyte to one billion parts by weight of the water sample.
- **pCi/l:** picocuries per liter is a measure of the radioactivity in water.
2017 Annual Water Quality Report

Presented By
City of Tarpon Springs
PWS ID#: 6521784

Reverse Osmosis System for Advanced Water Treatment
The Department of Environmental Protection (DEP) performed a Source Water Assessment on our system in 2017. The assessment was conducted to provide information about any potential sources of contamination in the vicinity of our wells. Eleven potential sources of contamination were identified for this system, ranging from low to high susceptibility levels. This assessment is designed to assist the community and utilities by locating potential sources of contamination, such as gas stations and recycling facilities in the vicinity of our wells, but does not indicate that any actual contamination of water sources has occurred. As an additional safeguard, the City’s reverse osmosis treatment process provides high removal of nearly all contaminants regulated by the EPA.

What can affect drinking water quality?
The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:
(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
(B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
(E) Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

To ensure that tap water is safe to drink, the EPA prescribes regulations, which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline at 1-800-426-4791.

Do I need to take special precautions?
Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline 1-800-426-4791.
Additional Information About Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Tarpon Springs is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Only use cold water for eating and drinking: Use only water from the cold-water tap for drinking, cooking, and especially for making baby formula. Hot water could contain higher levels of lead if it is present. Run cold water until it becomes as cold as it can get. Note that boiling water will NOT get rid of lead contamination.

If you decide to have your water tested yourself, it is recommended that you use a laboratory that has been certified under the National Environmental Laboratory Accreditation Program (NELAP). A list of NELAP accredited labs can be found at https://fldeploc.dep.state.fl.us/aams/loc_search.asp. If you choose to use water filters or treatment devices for lead removal, verify the claims of manufacturers by checking with independent certifying organizations that provide lists of treatment devices they have certified, such as NSF International.

How can I get involved?

If you would like to learn more or have any questions or concerns about this report, please contact the City of Tarpon Springs Water Division at (727) 937-2557. If you would like to attend the City of Tarpon Springs Board of Commissioners meetings, regularly scheduled meetings are held on the 1st and 3rd Tuesday of every month at 6:30pm at the Tarpon Springs City Hall. Please visit our website for more information: www.ctsfl.us.
Water Quality Data Table

The following table lists all of the drinking water contaminants that were detected during the calendar year of this report. Although many more contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be prohibitively expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In the table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below.

PRIMARY REGULATED CONTAMINANTS

<table>
<thead>
<tr>
<th>CONTAMINANT AND UNIT OF MEASURE</th>
<th>DATES OF SAMPLING (mo/yr)</th>
<th>MCL or MRDLG (ppb)</th>
<th>LEVEL DETECTED</th>
<th>RANGE OF RESULTS</th>
<th>MCLG</th>
<th>MCL</th>
<th>LIKELY SOURCE OF CONTAMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICROBIOLOGICAL CONTAMINANTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Coliform Bacteria</td>
<td>1/17 - 10/17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Normally present in the environment</td>
</tr>
<tr>
<td>INORGANIC CONTAMINANTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic (ppb)</td>
<td>2, 3, 10/17</td>
<td>No 2.5</td>
<td>ND - 2.5</td>
<td>0 - 10</td>
<td></td>
<td></td>
<td>Erosion of natural deposits; runoff from orchards; runoff from orchards; runoff from glass and electronics production wastes.</td>
</tr>
<tr>
<td>Barium (ppm)</td>
<td>2, 3, 10/17</td>
<td>No 0.028</td>
<td>ND - 0.028</td>
<td>2 - 2</td>
<td></td>
<td></td>
<td>Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.</td>
</tr>
<tr>
<td>Chromium (ppb)</td>
<td>2, 3, 10/17</td>
<td>No 4.50</td>
<td>ND - 4.50</td>
<td>100 - 100</td>
<td></td>
<td></td>
<td>Discharge of steel and pulp mills; erosion of natural deposits.</td>
</tr>
<tr>
<td>Fluoride (ppm)</td>
<td>2, 3, 10/17</td>
<td>No 0.51</td>
<td>ND - 0.51</td>
<td>4 - 4</td>
<td></td>
<td></td>
<td>Erosion of natural deposits; discharge from fertilizer and aluminum factories. Water additive which promotes strong teeth when the optimum level of 0.7 ppm.</td>
</tr>
<tr>
<td>Lead (point of entry) (ppb)</td>
<td>2, 3, 10/17</td>
<td>No 0.42</td>
<td>ND - 0.42</td>
<td>0 - 15</td>
<td></td>
<td></td>
<td>Residue from man-made pollution such as auto emissions and paint; lead pipe, casing and solder.</td>
</tr>
<tr>
<td>Nickel (ppb)</td>
<td>2, 3, 10/17</td>
<td>No 3.20</td>
<td>ND - 3.20</td>
<td>NA - 100</td>
<td></td>
<td></td>
<td>Pollution from mining and refining operations; natural occurrence in soil.</td>
</tr>
<tr>
<td>Nitrate (as Nitrogen) (ppm)</td>
<td>2, 3, 10/17</td>
<td>No 2.3</td>
<td>0.041 - 2.3</td>
<td>10 - 10</td>
<td></td>
<td></td>
<td>Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits.</td>
</tr>
<tr>
<td>Selenium (ppb)</td>
<td>2, 3, 10/17</td>
<td>No 3.5</td>
<td>ND - 3.50</td>
<td>50 - 50</td>
<td></td>
<td></td>
<td>Discharge of petroleum and metal refineries; erosion of natural deposits; discharge from mines.</td>
</tr>
<tr>
<td>Sodium (ppm)</td>
<td>2, 3, 10/17</td>
<td>No 78.4</td>
<td>56.8 - 78.4</td>
<td>NA - 160</td>
<td></td>
<td></td>
<td>Salt water intrusion, leaching from soil.</td>
</tr>
<tr>
<td>Thallium (ppm)</td>
<td>2, 3, 10/17</td>
<td>No 0.25</td>
<td>ND - 0.25</td>
<td>0.5 - 2</td>
<td></td>
<td></td>
<td>Leaching from pre-processing sites; discharge from electronics, glass, and drug factories.</td>
</tr>
</tbody>
</table>

STAGE 1 DISINFECTION & DISINFECTANT BY-PRODUCTS

<table>
<thead>
<tr>
<th>CONTAMINANT AND UNIT OF MEASURE</th>
<th>DATES OF SAMPLING (mo/yr)</th>
<th>MCL or MRDLG (ppb)</th>
<th>LEVEL DETECTED</th>
<th>RANGE OF RESULTS</th>
<th>MCLG</th>
<th>MCL</th>
<th>LIKELY SOURCE OF CONTAMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloramines (ppm)</td>
<td>11/17 - 12/17</td>
<td></td>
<td>2.8</td>
<td>1.22 - 3.3</td>
<td>4</td>
<td>4</td>
<td>Water additive used to control microbes.</td>
</tr>
</tbody>
</table>

STAGE 2 DISINFECTION AND DISINFECTANT BY-PRODUCTS

<table>
<thead>
<tr>
<th>CONTAMINANT AND UNIT OF MEASURE</th>
<th>DATE OF SAMPLING</th>
<th>AL EXCEEDED TYN</th>
<th>90TH PERCENTILE RESULT</th>
<th># OF SAMPLING SITES EXCEEDING THE AL</th>
<th>AL (ACTION LEVEL)</th>
<th>MCLG</th>
<th>MCL</th>
<th>LIKELY SOURCE OF CONTAMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halochloric Acids (HAAS) (ppb)</td>
<td>2, 5, 11/17</td>
<td>No</td>
<td>22.0</td>
<td>1.0 - 44.0</td>
<td>NA - 60</td>
<td></td>
<td>By-product of drinking water disinfection.</td>
<td></td>
</tr>
<tr>
<td>Total Trihalomethanes (THMs) (ppb)</td>
<td>2, 5, 11/17</td>
<td>No</td>
<td>40.7</td>
<td>2.75 - 54.7</td>
<td>NA - 80</td>
<td></td>
<td>By-product of drinking water disinfection.</td>
<td></td>
</tr>
</tbody>
</table>

LEAD AND COPPER

<table>
<thead>
<tr>
<th>CONTAMINANT AND UNIT OF MEASURE</th>
<th>DATE OF SAMPLING</th>
<th>AL EXCEEDED TYN</th>
<th>90TH PERCENTILE RESULT</th>
<th># OF SAMPLING SITES EXCEEDING THE AL</th>
<th>AL (ACTION LEVEL)</th>
<th>MCLG</th>
<th>MCL</th>
<th>LIKELY SOURCE OF CONTAMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (tap water) (ppb)</td>
<td>12/16</td>
<td>No</td>
<td>0.083</td>
<td>0</td>
<td>1.3</td>
<td></td>
<td>Corrosion of household plumbing systems; erosion of natural deposits.</td>
<td></td>
</tr>
</tbody>
</table>

Important Drinking Water Definitions

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are as close as possible to the MCLGs as feasible using the best available treatment technology. Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. Locational Running Annual Average (LRAA): the average of sample analytical results for samples taken at a particular monitoring location during the previous four calendar quarters. Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum residual disinfectant level goal or MRDLG: The level of a disinfecting water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.