## ADDITIONAL HEALTH INFORMATION ## FOR CUSTOMERS WITH SPECIAL HEALTH CONCERNS Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: - (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - (B) Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - (C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential - (D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems. - (E) Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, the EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791. ## **HOW TO REACH US** If you have any questions about this report or concerning your water utility, please contact your local FGUA office at (727) 372-0115 or visit our web site at http://www.fgua.com. Si tiene preguntas acerca de este reporte o su servicio de agua potable por favor comuníquese con su oficina local al teléfono (727) 372-0115 o visite nuestra página en internet http://www.fgua.com. The FGUA encourages its customers to become involved in decisions that may affect the quality of their drinking water. Customers interested in becoming involved may attend regularly scheduled meetings of the FGUA Board of Directors. These meetings are advertised in your local newspaper and also on the FGUA web site. ### SOURCE WATER ASSESSMENT PLAN In 2018 the Florida Department of Environmental Protection performed a Source Water Assessment on our system and a search of the data sources indicated seven potential sources of contamination ranging from low to moderate concern level. The assessment results are available on the FDEP Source Water Assessment and Protection Program website at www.dep.state.fl.us/swapp. This report shows our water quality results and what they mean. # **GULF HARBORS /** LINDRICK **DRINKING WATER QUALITY REPORT** Este reporte contiene información muy importante sobre su agua potable. Tradúscalo o hable con un amigo que lo entienda bien. We are pleased to present to you this year's Annual Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Your water is obtained from groundwater sources, which come from the Floridan consists of chloramination for disinfection as well s Aquamag which is a sequestering agent used ## **HOW WE ENSURE YOUR DRINKING WATER IS SAFE** ng water according to Federal and State laws, rules, and regulations. Except where indicated otherwise, this report is based on the results of our monitoring for the period of January 1 to December 31, 2018. Data obtained before January 1, 2018, and presented in this report are from the most recent testing done in accordance with the laws, rules, and regulations. ## **Table Notes** - A. Results in the Level Detected column for radiological contaminants, inorganic contaminants, synthetic organic contaminants including pesticides and herbicides, and volatile organic contaminants are the highest average at any of the sampling points or the highest detected level at any sampling point, depending on the sampling frequency. - B. For bromate, chloramines, or chlorine, the level detected is the highest running annual average (RAA), computed quarterly, of monthly averages of all samples collected. The range of results is the range of results of all the individual samples collected during the past year. - C. For haloacetic acids or TTHM, the level detected is the highest RAA, computed quarterly, of quarterly averages of all samples collected if the system is monitoring quarterly or is the average of all samples taken during the year if the system monitors less frequently than quarterly. Range of results is the range of individu es (lowest to highest) for all monitoring locations. - D. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The FGUA is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the safe Drinking Water Hotline or at | WATER QUALITY SUMMARY TABLE | | | | | | | | | | |---------------------------------------------|-----------------------------|-------------------|----------------|------------------|------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--| | RADIOACTIVE CONTAMINANTS | | | | | | | | | | | Contaminant and Unit of Measurement | Dates of Sampling (mo./yr.) | MCL Violation Y/N | Level Detected | Range of Results | MCLG | MCL | Likely Source of Contamination | | | | Alpha emitters (pCi/L) | 05/2017 | N | 5.7 | N/A | 0 | 15 | Erosion of natural deposits | | | | Radium 226 + 228 or combined radium (pCi/L) | 05/2017 | N | 2.9 | N/A | 0 | 5 | Erosion of natural deposits | | | | Uranium (μg/L) | 05/2017 | N | 4.7 | N/A | 0 | 30 | Erosion of natural deposits | | | | INORGANIC CONTAMINANTS | | | | | | | | | | | Contaminant and Unit of Measurement | Dates of sampling (mo./yr.) | MCL Violation Y/N | Level Detected | Range of Results | MCLG | MCL | Likely Source of Contamination | | | | Antimony (ppb) | 05/2017 | N | 0.11 | N/A | 6 | 6 | Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder | | | | Arsenic (ppb) | 05/2017 | N | 2.4 | N/A | N/A | 10 | Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes | | | | Barium (ppm) | 05/2017 | N | 0.026 | N/A | 2 | 2 | Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits | | | | Fluoride (ppm) | 05/2017 | N | 0.21 | N/A | 4 | 4.0 | Erosion of natural deposits; discharge from fertilizer and aluminum factories. Water additive which promotes strong teeth when at the optimum level of 0.7 ppm | | | | Nitrate (as Nitrogen) (ppm) | Quarterly 2019 | N | 7.7 | 1.7 – 7.7 | 10 | 10 | Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits | | | | Selenium (ppb) | 05/2017 | N | 2.5 | N/A | 50 | 50 | Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines | | | | Sodium (ppm) | 05/2017 | N | 110 | N/A | N/A | 160 | Salt water intrusion, leaching from soil | | | | Thallium (ppb) | 05/2017 | N | 0.16 | N/A | 0.5 | 2 | Leaching from ore-processing sites; discharge from electronics, glass, and drug factories | | | | SECONDARY CONTAMINANTS | | | | | | | | | | | Contaminant and Unit of Measurement | Dates of sampling (mo./yr.) | MCL Violation Y/N | Level Detected | Range of Results | MCLG | MCL | Likely Source of Contamination | | | | Total Dissolved Solids (ppm) | Monthly 2019 | N | 610 | 390 - 610 | N/A | 500 | Natural occurrence from soil leaching | | | Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant you should ask advice from your health care provider. | DISINFECTANTS AND DISINFECTION BY-PRODUCTS | | | | | | | | | | |-----------------------------------------------------|-----------------------------|------------------------------|----------------|------------------|---------------|-------------|-------------------------------------------|--|--| | Disinfectant or Contaminant and Unit of Measurement | Dates of sampling (mo./yr.) | MCL or MRDL<br>Violation Y/N | Level Detected | Range of Results | MCLG or MRDLG | MCL or MRDL | Likely Source of Contamination | | | | Chlorine (ppm) | 01/2019 – 12/2019 | N | 2.46 | 0.8 - 3.8 | MRDLG = 4 | MRDL = 4.0 | Water additive used to control microbes | | | | Haloacetic Acids (five) (HAA5) (ppb) | 07/2019 | N | 3.06 | N/A | N/A | MCL = 60 | By-product of drinking water disinfection | | | | TTHM [Total trihalomethanes] (ppb) | 07/2019 | N | 3.72 | 3.71 – 3.72 | N/A | MCL = 80 | By-product of drinking water disinfection | | | We are required to monitor your drinking water for specific contaminates on a regular basis. In October 2018 our system had a monitoring violation because we did not collect the required number of samples for Total Coliform Bacteria, and therefore cannot be sure of the quality of your drinking water during that time. Six samples were collected in October when ten were required. We collected an additional four samples on November 7th, 2018. All of the samples tested in October and November yielded satisfactory results. | LEAD AND COPPER (TAP WATER) | | | | | | | | | | |-------------------------------------------------------------------------------------------------------------------------------|---------|---|-----|---|-----|----------------------|--------------------------------------------------------------------------------------------------------|--|--| | Contaminant and Unit of Measurement Dates of sampling (mo./yr.) AL Violation Y/N 90th Percentile Result Exceeding the AL MCLG | | | | | | AL<br>(Action Level) | Likely Source of Contamination | | | | Copper (tap water) (ppm) | 07/2017 | N | 1.1 | 0 | 1.3 | | Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives | | | | MICROBIOLOGICAL CONTAMINANTS | | | | | | | | | | |--------------------------------------|-----------------------------|-------------------|--------------------------------------------------|------|-----|--------------------------------|--|--|--| | Contaminant | Dates of sampling (mo./yr.) | MCL Violation Y/N | Total Number of Positive<br>Samples for the Year | MCLG | MCL | Likely Source of Contamination | | | | | E. coli (at the ground water source) | 06, 09/2019 | Y | 4 | 0 | 0 | Human and animal fecal waste | | | | Our water system detected fecal indicators (E. coli) in three of our wells in June 2019 and in one of our wells in September 2019. E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, the elderly, and people with severely-compromised immune systems. Samples taken of the treated/finished water both before and after the positive result from the well were absent of Total coliform/E. Coli Bacteria. The system was investigated and additional samples taken were absent of E. coli. In the table, you may find unfamiliar terms and abbreviations. To help you better understand these terms we've provided the following definitions: Action level (AL): the concentration of a contaminant which, if exceeded, triggers for a margin of safety. treatment or other requirements that a water system must follow. Initial Distribution System Evaluation (IDSE): an important part of the Stage 2 Disinfection Byproducts Rule (DBPR). The IDSE is a one-time study conducted by tant is necessary for control of microbial contaminants. water systems to identify distribution system locations with high concentra- tions of Maximum residual disinfectant level goal or MRDLG: the level of a drinking trihalomethanes (THMs) and haloacetic acids (HAAs). Water systems will use results from the IDSE, in conjunction with their Stage 1 DBPR compliance monitoring data, to select compliance monitoring locations for the Stage 2 DBPR. Maximum contaminant level or MCL: the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Maximum contaminant level goal or MCLG: the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow Maximum residual disinfectant level or MRDL: the highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfec- water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial Millions fibers per littler (MFL): measure of the presence of asbestos fibers that are longer than 10 micrometers. Millirem per year (mrem/yr): measure of radiation absorbed by the body. Nephelometric Turbidity Unit (NTU): measure of the clarity of the water. Turbidity in excess of 5 NTU is just noticeable to the average person. Locational Running Annual Average (LRAA): the average of sample analytical results for samples taken at a particular monitoring location during the previous four calendar ND: means not detected and indicates that the substance was not found by laboratory ppm: parts per million or milligrams per liter is one part by weight of analyte to one million parts by weight of the water sample. ppb: parts per billion or micrograms per liter is one part by weight of analyte to one billion parts by weight of the water sample. pCi/I: picocuries per liter is a measure of the radioactivity in water. TT: means treatment technique, a required process intended to reduce the level of a contaminant in drinking water.