ADDITIONAL HEALTH INFORMATION

FOR CUSTOMERS WITH SPECIAL HEALTH CONCERNS

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- (B) Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- (C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential
- (D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- (E) Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

HOW TO REACH US

If you have any questions about this report or concerning your water utility, please contact your local FGUA office at (352) 633-9700 or visit our web site at http://www.fgua.com...

Si tiene preguntas acerca de este reporte o su servicio de agua potable por favor comuníquese con su oficina local al teléfono (352) 633-9700 o visite nuestra página en internet http://www.fgua.com.

The FGUA encourages its customers to become involved in decisions that may affect the quality of their drinking water. Customers interested in becoming involved may attend regularly scheduled meetings of the FGUA Board of Directors. These meetings are advertised in your local newspaper and also on the FGUA web site.

SOURCE WATER ASSESSMENT PLAN

In 2018 the Florida Department of Environmental Protection performed a Source Water Assessment on the City of Lakeland's water system and a search of the data sources indicated eleven potential sources of contamination with a low to high susceptibility level. The assessment results are available on the FDEP Source Water Assessment and Protection Program website at www.dep.state.fl.us/swapp.

This report shows our water quality results and what they mean.

Table Notes

- A. Results in the Level Detected column for radiological contaminants, inorganic contaminants, synthetic organic contaminants including pesticides and herbicides, and volatile organic contaminants are the highest average at any of the sampling points or the highest detected level at any sampling point, depending on the sampling frequency.
- B. For bromate, chloramines, or chlorine, the level detected is the highest running annual average (RAA), computed quarterly, of monthly averages of all samples collected. The range of results is the range of results of all the individual samples collected during the past year.
- For haloacetic acids or TTHM, the level detected is the highest sample taken during the year. Range of results is the range of individual samples (lowest to highest) for all monitoring locations.
- D. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The FGUA is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes. before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the safe Drinking Water Hotline or at http://www.epa.gov/safe-wa

VILLAGE WATER PWS ID# 6532779

We are pleased to present to you this vear's Annual Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water.

We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water.

WHERE YOUR WATER COMES FROM

The Village Water system purchases its water from the City of Lakeland, which maintains 19 groundwater wells that draw from the Floridian Aguifer. The water is treated in a split-treatment lime softening plant. Three dual media filters are used in the lime filtration, and chlorinated for disinfection. Fluoride is also added to the water to promote strong teeth.

The FGUA routinely monitors for contaminants your drinking water according to Federal and e laws, rules, and regulations. Except where ed otherwise, this report is based on the ws, rules, and regulations.

As authorized and approved by the EPA, the State has reduced monitoring requirements for certain contaminants to less often than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. As a result some of our data is more than one year old.

WATER QUALITY SUMMARY TABLE – PWS ID NO. 6532779													
RADIOACTIVE CONTAMINANTS – From City of Lakeland													
Contaminant and Unit of Measurement	Dates of sampling (mo./yr.)	MCL Violation Y/N	Level Detected	Range of Results	MCLG	MCL	Likely Source of Contamination						
Alpha emitters (pCi/L)	01/2017 – 12/2017	N	3.55	ND – 3.55	0	15	Erosion of natural deposits						
Radium 226 + 228 or combined radium (pCi/L)	01/2017 – 12/2017	N	0.63	ND - 0.63	0	5	Erosion of natural deposits						
		INORG	ANIC CONTAMI	NANTS – From City	y of Lake	land							
Contaminant and Unit of Measurement	Dates of sampling (mo./yr.)	MCL Violation Y/N	Level Detected	Range of Results	MCLG	MCL	Likely Source of Contamination						
Barium (ppm)	01/2017 – 12/2017	N	0.008	ND - 0.008	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits						
Fluoride (ppm)	01/2017 – 12/2017	N	0.74	0.32 – 0.95	4	4	Erosion of natural deposits; discharge from fertilizer and aluminum factories. Water additive which promotes strong teeth when at the optimum level of 0.7 ppm						
Sodium (ppm)	01/2017 – 12/2017	N	10.8	6.36 – 10.8	N/A	160	Saltwater intrusion, leaching from soil						

	DISINFECTANTS AND DISINFECTION BY-PRODUCTS – From City of Lakeland													
Disinfectant or Contaminant and Unit of Measurement Dates of sampling (mo./yr.) MCL or MRDL Violation Y/N Level Detected Range of Results MCL or MRDL MCL or MRDL MCL or MRDL Likely Source of Contamination														
Chlorine (ppm)	01/2019 – 12/2019	N	1.92	1.53 – 2.17	MRDLG=4	MRDL = 4.0	Water additive used to control microbes							
Haloacetic Acids (five) (HAA5) (ppb)	01/2019 – 12/2019	N	29.5	10.8 – 30.8	N/A	MCL = 60	By-product of drinking water disinfection							
TTHM [Total trihalomethanes] (ppb)	01/2019 – 12/2019	N	49.7	17.6 – 59.1	NA	MCL = 80	By-product of drinking water disinfection							

LEAD AND COPPER (TAP WATER) – From City of Lakeland													
Contaminant and Unit of Measurement	Dates of sampling (mo./yr.)	AL Violation Y/N	90th Percentile Result	Exceeding the AL	MCLG	AL (Action Level)	Likely Source of Contamination						
Copper (tap water) (ppm)	08/2017	N	0.20	0	1.3	1.3	Corrosion of household plumbing systems; erosion of natural deposit from wood preservatives						
Lead (tap water) (ppb)	08/2017	N	3.0	0	0	15	Corrosion of household plumbing systems, erosion of natural deposits						

DISINFECTANTS AND DISINFECTION BY-PRODUCTS – From Village Water													
Disinfectant or Contaminant and Unit of Measurement Dates of sampling (mo./yr.) Dates of sampling (mo./yr.) Violation Y/N Level Detected Range of Results MCL or MRDL Violation Y/N Likely Source of Contamination													
Chlorine (ppm)	01/2019 – 12/2019	N	1.62	1.47 – 1.74	MRDLG = 4	MRDL = 4.0	Water additive used to control microbes						
Haloacetic Acids (five) (HAA5) (ppb)	07/2018	N	19.03	N/A	N/A	MCL = 60	By-product of drinking water disinfection						
TTHM [Total trihalomethanes] (ppb)	07/2018	N	48.37	N/A	NA	MCL = 80	By-product of drinking water disinfection						

LEAD AND COPPER (TAP WATER) – From Village Water												
Contaminant and Unit of Measurement	Likely Source of Contamination											
Copper (tap water) (ppm)	07/2018	N	0.045	0	1.3	1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives					
Lead (tap water) (ppb)	07/2018	N	2.3	0	0	15	Corrosion of household plumbing systems, erosion of natural deposits					

In the table, you may find unfamiliar terms and abbreviations. To help you better understand these terms we've provided the following definitions:

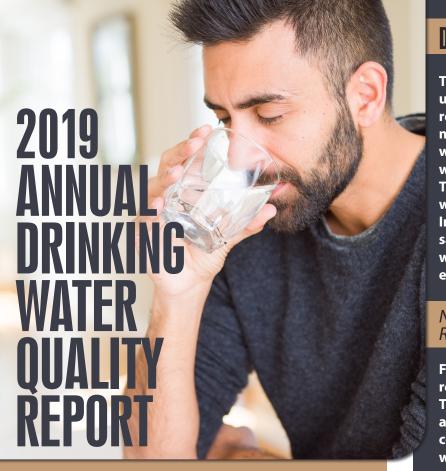
Action level (AL): the concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Maximum contaminant level or MCL: the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum contaminant level goal or MCLG: the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL: the highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level goal or MRDLG: the level of a drinking water disinfectant below which there is no known or expected risk to health.


MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

ND: means not detected and indicates that the substance was not found by laboratory analysis.

ppm: parts per million or milligrams per liter is one part by weight of analyte to one million parts by weight of the water sample.

ppb: parts per billion or micrograms per liter is one part by weight of analyte to one billion parts by weight of the water sample.

pCi/I: picocuries per liter is a measure of the radioactivity in water.

THE QUALITY OF DRINKING WATER TO OUR CUSTOMERS

The City of Lakeland, Department of Water Utilities serves 60127 metered accounts with a population of 180792 people. In 2019, we distributed over 8 billion gallons of water to our customers.

WATER SOURCE

Nineteen wells (13 wells at the T.B. Williams WTP and 6 wells at the C.W. Combee WTP) drilled 750 feet into the Floridan aquifer, cased and grouted 200 feet below the surface provide raw water to the City's two lime softening plants. Utilizing a variety of treatment processes the operators control the blending of raw water with softened water to produce water with stability slightly on the scale forming side (utilizing Langlier's Saturation Index as the primary parameter). After blending the water, it is then filtered utilizing dual media filters consisting of anthracite and sand. The finished water is then delivered to the transmission/distribution system using high service pumps to maintain system pressure. Chemical addition includes calcium hydroxide (lime) and polymer in the lime softening process, starch for sludge conditioning, fluoride for dental health, phosphate for calcium sequestration prior to filtration and chlorination to 2.8 ppm free chlorine residual for disinfection.

SOURCE WATER ASSESSMENT AND PROTECTION PROGRAM*

Size of Assessment Area: For this community system, a 5-year ground water travel time around each well was used to define the assessment area. The 5-year ground water travel time is defined by the area from which water will drain to a well pumping at the average daily permitted rate for a five-year period of time.

DEAR CITY OF LAKELAND CUSTOMER:

The Safe Drinking Water Act (SDWA) requires that utilities issue an annual "Consumer Confidence" report to customers in addition to other notices that may be required by law. This report details where our water comes from, what it contains, and the risks our water testing and treatment are designed to prevent. The City of Lakeland is committed to providing you with the safest and most reliable water supply. Informed consumers are our best allies in maintaining safe drinking water. We are proud to report that the water provided by The City of Lakeland meets or exceeds established water-quality standards.

NATIONAL PRIMARY DRINKING WATER REGULATION COMPLIANCE

For more information, or to request a copy of this report, call the City of Lakeland at (863) 834-6802. The water plant operator on duty will be glad to answer any questions. Water Quality Data for your community water system is available at www.lakelandgov.net/water/water-quality

Number of Wells: 19

The Department of Environmental Protection has performed a Source Water Assessment on the **T.B. Williams and C.W. Combee Treatment Plants** in 2018. The assessments were conducted to provide information about any potential sources of contamination in the vicinity of our wells. There are 11 Unique Potential Contaminant Sources identified for this system. 9 wells have been identified with a "moderate" concern level and 8 Wells have been identified with a "high" concern level. The assessment results are available on the FDEP Source Water Assessment and Protection Program website at www.dep.state.fl.us/swapp.

AN EXPLANATION OF THE WATER OUALITY DATA TABLE

The table shows the results of our monitoring for the period of January 1 to December 31, 2019 and includes test results in earlier years for contaminants sampled less than once a year. For contaminants not required to be tested in 2019, test results are for the most recent testing done in accordance with the regulations. The table on the right contains the name of each substance, the highest level allowed by regulation (MCL), the ideal goals for public health (MCLG), the amount detected, the usual sources of such contamination, footnotes explaining our findings, and a key, referencing units of measurement. Definitions of MCL, MCLG, MRDL and MRDLG are important.

MAXIMUM CONTAMINANT LEVEL OR MCL

The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MAXIMUM CONTAMINANT LEVEL GOAL OR MCLG

The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level or MRDL:

The highest level of a disinfectant allowed in drinking water.

Maximum Residual Disinfectant Level Goal or MRDLG:

The level of a drinking water disinfectant below which there is no known or expected risk to health.

REQUIRED MONITORING TEST RESULTS TABLE

Key to Table: **AL**= Action Level **MCL**= Maximum Contaminant Level **MCLG**= Maximum Contaminant Level Goal **pCi/L** = Pico curies per liter (a measure of radioactivity in water) **ppm**= parts per million or milligrams per liter (mg/l) (One part by weight of analyte to 1 million parts by weight of the water sample), **ppb** = parts per billion(One part by weight of analyte to 1 billion parts by weight of the water sample), or micrograms per liter (μg/L) **n/a**= Does Not Apply **ND**= indicates that the substance was not detected by laboratory analysis.

NON-SECONDARY CONTAMINANT TABLE

** Results in the Level Detected column for radiological contaminants and inorganic contaminants are the highest average at any of the sampling points or the highest detected level at any sampling point, depending on the sampling frequency.

Contaminant and Unit of Measurement	Monitoring Period Month/ Year	MCL Violation Yes/No	Level Detected **	Range of Results MCLG		MCL	Likely Source of Contamination
Radiological Conta	minants						
Alpha Emitters (pCi/L)	1/1/2017- 12/31/2017	No	3.55	ND - 3.55	0	15	Erosion of natural deposits
Radium 226 + 228 or combined Radium (pCi/L)	1/1/2017- 12/31/2017	No	0.63	ND - 0.63	0	5	Erosion of natural deposits

Inorganic Contami	Inorganic Contaminants												
Barium (ppm)	1/1/2017- 12/31/2017	No	0.008	ND -0.008	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits						
Fluoride (ppm)	1/1/2017- 12/31/2017	No	0.74	0.32-0.95	4	4	Erosion of natural deposits; discharge from fertilizer and aluminum factories. Water additive which promotes strong teeth when at the optimum level of 0.7 ppm						
Sodium (ppm)	1/1/2017- 12/31/2017	No	10.8	6.3-10.8	n/a	160	Salt water intrusion; leaching from soil						

Stage 2 Disinfectant / Disinfectant By-Products Rule

Chlorine: Level Detected is the 2019 monthly average for residual Chlorine; Range of Results is the range of 2019 average monthly Chlorine residual level results (lowest to highest) at the individual sampling sites. TTHMs and HAA5s: Level detected is the highest LRAA detected in 2019 and the Range of Results is the 2019 results (lowest to highest) at the individual sampling sites.

Disinfectant or Contaminant and Unit of Measurement	Dates of sampling (mo./yr.)	MCL Violation (Y/N)	Level Detected	Range of Results	MCLG	MCL	Likely Source of Contamination
Chlorine	1/01/2019- 12/31/2019	No	1.92	1.53 – 2.17	MRDLG= 4	MRDL = 4	Water additive to control microbes
Haloacetic Acids (HAA5)(ppb)	1/01/2019- 12/31/2019	No	29.5	10.8 - 30.8	N/A	60	By-product of drinking water disinfection
Total Trihalomethanes (TTHM) (ppb)	1/01/2019- 12/31/2019	No	49.7	17.6 – 59.1	N/A	80	By-product of drinking water disinfection

Lead and Copper (Tap Water)

	ninant and Unit of Measurement	Dates of sampling (mo./yr.)	AL Violation Y/N	90 th Percentile Result	No. of sampling sites exceeding the AL	MCLG	AL (Action Level)	Likely Source of Contamination
Сор	oper (tap water) (ppm)	8/2017	No	0.20	0	1.3	1.3	Corrosion of household plumbing; erosion of natural deposits; leaching from wood preservatives
Le	ead (tap water) (ppb)	8/2017	No	3.0	0	0	15	Corrosion of household plumbing; erosion of natural deposits;

Water-Quality Table Footnotes: Although we ran many tests, only the listed substances were found. They are all below the MCL required.

REQUIRED HEALTH INFORMATION

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Lakeland is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- **(B)** Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- **(C)** Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- **(D)** Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- **(E)** Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the EPA prescribes regulations, which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791Some people may be more vulnerable to contaminants in drinking water than the rest of the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC quidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).